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A b s t r a c t - T h e  motion of a Brownian particle in the presence of a deformable interface is studied by considering 
the random distortions of interface shape due to spontaneous thermal impulses from the surrounding fluid. The 
fluctuation-dissipation theorem is derived for the spontaneous fluctuations of interface shape using the method of 
normal modes in conjunction with a Langevin type equation of motion for a Brownian particle, in which the fluctuating 
force arises from the continuum motions induced near the particle by the fluctuation of interface shape. The analysis 
restdts in the prediction of autocorrelation functions for the location of the dividing surface, for the random force 
acting on the particle, and for the particle velocity. The partMe velocity correlation, in turn, yields the effective diffusion 
coefficient due to random fluctuations of the interface shape. 
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Langevin Equation, Normal Mode Decomposition 

INTRODUCTION 

We consider in this paper motions of Brownian particles near 
a fluctuating interface due to the thermal agitations of the nearby 
fluids. Interest in this problem stems from its relevance to Brow- 
nian motion or diffusion near a fluid-fluid interface. The difficul- 
ties experienced in trying to model the motions of Brownian par- 
ticles near an interface are many and mainly attributable to the 
deformation of the interface. Most of preceding investigations so 
far pertain to the case in which the interface remains precisely 
flat, in spite of the random motions induced in the two contiguous 
fluids by the thermal agitations [cf. Brenner and Leal, 1977, 1982; 
Gotoh and Kaneda, 1982; Lee et al., 1979; Lee and Leal, 1980; 
Yang and Leal, 1983, 1984; and Yang and Hong, 1987]. It is, of 
course, that a real interface cannot remain precisely flat except 
for the limiting case of a rigid wall. As a matter of fact, the inter- 
face will fluctuate around the equilibrium flat configuration due 
to the thermal agitation of the surrounding fluids, even in tlhe 
absence of Brownian particles, and these random changes in the 
interface shape will produce fluctuating velocity fields and so in- 
duce random motions of Brownian particles in the vicinity of the 
interface. These random motions are in addition to the random 
motions caused by direct interactions between the Brownian par- 
ticles and the molecules of the surrounding fluid. Thas, the inter- 
face effects on the motion of Brownian particles are due to the 
fluctuating velocity fields caused by the random changes in the 
interface shape. 

Whilst considerable progress has been made over the last de- 
cade in understanding the equilibrium properties of the liqui[d- 
vapor interface [-cf. Buff et al., 1965; Evans, 19813, the macrosco- 
pic structure and thermodynamical properties of an interface bet- 
ween two immiscible fluids are relatively less well understood. 
One approach, in principle, to understanding the structure of the 
fluid-fluid interface would be to use the same type of detailed 
microscopic molecular theory that has been used widely in the 

study of liquid-vapor interface [cf. Teletzke et al., 1982]. In the 
present study, however, we approach the problem from a macro- 
scopic statistical framework in order to develop physically appealing 
and mathematically tractable theory for systems of this type. Phi- 
losophically similar macroscopic statistical methods have been 
very. successful in determining macroscopic properties of gases 
(e.g., the relationship between pressure and temperature in the 
system) that are identical to the results from the molecular kinetic 
theory. Further, essentially the same macroscopic method that 
we describe here has been the cornerstone of theoretical descrip- 
tions of the relevant dynamics of Brownian motion. In particular, 
we adopt the conceptual idea of separating the phenomenon into 
two parts: one associated with rapid fluctuations with time scales 
characteristic of molecular motion, and the other associated with 
a much slower response time characteristic of viscous relaxation 
of the system. 

In the present work, we examine the interface fluctuations due 
to random thermal impulses, and evaluate the corresponding ve- 
locity fields in order to determine the induced particle motions. 
This is done by employing nonequilibrium thermodynamics in 
conjunction with a capillary-wave model to describe the interface 
dynamics. The objective of our study is to determine the statistical 
properties of near equilibrium fluctuations of an interface between 
two immiscible fluids based on macroscopic statistical mechanics 
coupled with the concept of a fluctuation-dissipation principle as 
developed by Landau and Lifshitz [ 1959]. According to the fluctua- 
tion-dissipation principle, the statistical properties of nonequilib- 
rium fluctuations, linear in the external forces from a macroscopic 
point of view, can be related to equilibrium self-correlations. We 
thus begin our analysis by determining the equilibrium self-corre- 
lations of interface fluctuations. 

E Q U I L I B R I U M  FLUCTUATIONS 

We begin by considering a system which consists of two immis- 
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Fig. l. Schematic sketch of the fluctuating interface and a Brownian 
sphere. In the absence of the fluctuations, the interface is des- 
ignated by the plane x3=0. 

cible Newtonian fluids 1 and 2 that are separated by an interface.., 
as depicted in Fig. 1. We assume that the interface can be desig- 
nated by the plane x3=0 in the absence of the fluctuations. The 
surface of the interface is denoted as Ils defined by 

IIs= x3-rl(x,, t )=0  (1) 

where x, is a position vector representing points lying in a plane 
parallel to the undeformed, flat interface. In our model system, 
the interface shape function rl(X~, t) is envisioned as fluctuating 
around equilibrium, i.e., rl(x,, t)=0, due to the spontaneous ran- 
dom impulses from the surrounding fluids. Indeed, our objectiw. ~ 
in this section is to evaluate the autocorrelation function (rl2(x.,:, 
t)) of the interface fluctuation by determining the probability dis- 
tribution of interface distortion, q(x, t), and utilizing the general 
theory of statistical physics. The autocorrelation function (rlZ(~:, 
t)) will in turn provide the statistical properties of the system 
at equlibrium necessary to calculate the random velocity field 
induced by the spontaneous fluctuations in interface shape. In 
order to determine the probability distribution of ~l(x,, t), we thus 
need to be able to evaluate the entropy change due to the inter- 
face fluctuations. 

The entropy change AS{q(x,, t)} associated with the interface 
distortion can be related to the free energy functional Abq(x~, 
t)} corresponding to the distortion q(x,, t) as 

ASh(x,, t)}= A{rl(x~, t)} (2) 
T 

and thus the derivative of the entropy change with respect to 
the free energy is just - l / T ,  where T is the temperature of 
the system; the temperatures of fluids 1 and 2 are the same, 
since the system is assumed to be in equilibrium. The free energy 
functional A{fl(~, t)} associated with the distortion q(x~, t) is de- 
fined to be the isothermal reversible work necessary at equilib- 
rium to impose the disturbance, i.e., 

Atn(~, t)+ylV,q(x,, 012] dx~ (31) 

Here, Ap(= p~-p0  is the density difference between fluids 1 and 
2, V, denotes the two-dimensional gradient operator on the plane 
defined by x~ and y is the surface tension between the two fluids. 
The first term in the integrand represents the free energy asso- 
ciated with the external acceleration due to gravity g and the 

second is associated with an increase in surface area. The requir- 
ed probability distribution for rl(x, t) is thus 

W{q(x~, t)}=f~exp[-2@Tfxs[(Ap)g~Z(x, t) 

+ylV,~q(x, t)t 2} dx,] (4) 

in which ko is the Boltzmann constant and ~ denotes the normali- 
zation constant. The distribution (4) is a Gibbs (or canonical) dis- 
tribution for the interface distortion [Buff et al., 1965; Landau 
and Lifshitz, 19801. We now determine the autocorrelation func- 
tion (n2(x,, t)) using the probability distribution (4). Since the 
integrand of (4) contains tvsq(r~, 012, however, it is convenient 
to resolve the arbitrary fluctuation rl(x,, t) into independent modes 
of a two dimensional Fourier-transform 

t)= f, 6(k. t)exp(ik-x,)dk (5) 

in which k is the wave vector (i.e., the wave number k=  [kl). 
In this formulation, the disturbed surface is represented as a col- 
lective coordinate of decoupled surface harmonic waves. Further, 
the entropy change can also be expressed in terms of the Fourier- 
tranform variables. It is now simple matter to evaluate the auto[or- 
relation of the fluctuations for two different wave vectors k and 
k'. The result is given by 

('q(k, t)q(k', t ))=(2n)-2kBT[(Ap)g-yk-k '] 5(k+k')  (6) 

where 6(k+k')  is the two-dimensional Dirac delta function. The 
correlation function in terms of the position vector x, can then 
be evaluate by Fourier transformation of (6). The result is 

(rl(x,, t)~q(x/, t))=kBT f * ~  
kJ0(rk) 

*.,. ( A p ) ~ k  2 me" (7) 

in which r =  Ix , -x / ]  and J0 is the Bessel function of the first 
kind of order 0. The lower limit, k~i., of possible wave numbers 
is inversely proportional to the largest length scale of the system 
and thus k~,~.-*0 if the interface is unbounded. The choice for 
an upper cutoff on wave number, k.,o., is somewhat arbitrary, and 
the present continuum treatment cannot make a rigorous identifi- 
cation of this quantity. However. in a theoretical treatment of 
a liquid-vapor interface, Buff et al. [1965"1 selected k,~. as being 
inversely proportional to the interface width, Lp, across which 
a sharp discontinuity in density may occur. In addition, thermody- 
namic perturbation theories have been developed by Evans 
[1981] for the study of a planar interface, which show that the 
order of magnitude of Lp is approximately the: same as the inter- 
molecular length scale o of surrounding molecules, and in fact 
Lp ~ 1.5o-3.0o. 

The mean-square fluctuation, which provides a measure of the 
magnitude of interface distortion via spontaneous fluctuations, can 
be obtained readily from (7) with r--O and k~i.--O: 

kBT r y (n~(x,, t)) = q-~--ln[ 1+ (--~p)~ l~J]  (8) 

It can be noted from (8) that the mean-square fluctuation (rl2(x,, 
t)) becomes magnified as either the density difference or the sur- 
face tension between the two fluids becomes smaller. In fact, in 
the limit Ap~0 ,  the autocorrelation function of rl(x,, t) diverges 
logarithmically. This weak divergence is relal:ed to the fact that 
q(x, t) characteristic of distortions of the inteJdace is a symmetry 
breaking collective coordinate in terms of decoupled harmonic 
surface waves (i.e., the Fourier decomposition, (5), breaks clown 
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in this particular case of Ap=0) ,  which was also noted by Jhon 
et al. [1978]. They have developed the so-called memory function 
approach for interface dynamics and found that, associated with 
the symmetry breaking variable, q(x, t) is a propagating mode 
whose long-wave length dispersion relation is identical to the fa- 
mous result for capillary waves, i.e., o)(k)= {u in which 
co is the frequency of capillary waves. It then follows that capillary 
waves must always exist if a nonuniform density distribution ex- 
ists (i.e., Ape0),  even if y=0.  It is noteworthy, in tlhis context, 
that the mean square fluctuation (qZ(x~, t)) approaches a finite 
limiting value, k,Tk~2/4n(Ap)g, as the surface tension between 

the two fluids vanishes (i.e., y-~0). 
So far we have dealt only with fluctuations around the equlib- 

rium state of the system using Gibbs ensembles, i.e., we have de- 
rived the equilibrium correlation functions for the interface di,;- 
tortion in terms of ensemble averages. According to the ergodic 
hypothesis by Landau and Lifshitz [-1980], however, ensemble 
averages yield the same results as long-time averages over the 
history of a single system providing the system is statistically 
stationary. Thus, we can regard the correlation functions in (6)- 
(8) as limiting time-average values with t - ~ .  In the next section, 
the time-dependent interface fluctuations and the corresponding 
velocity fields will be considered explicitly. The time-averages 
from these detailed time-dependent fluctuating fields must have 
the same long-time values (or forms) as calculated in the present 
section using the concept of an ensemble of near-equilibrium flu<:- 
tuations [Landau and Lifshitz, 1980; Kreuzer, 1984]. 

T IME CORRELATIONS AND T H E  VELOCITY FIELD 
INDUCED BY I N T E R F A C E  FLUCTUATIONS 

The impulsive motion of a body surrounded by a Wiscous" 
fluid is accompanied by frictional processes, which ultimately 
bring the motion to a stop. The kinetic energy of a Brownian 
particle, contributed by thermal fluctuations of the surrounding 
medium, is thereby converted into heat and is said to be dissipat- 
ed. This is the basic concept of the fluctuation-dissipation theorem 
developed by Landau and Lifshitz F1959]. A rigorous, purely me- 
chanical treatment of such a motion is clearly impossible. Since 
the energy of macroscopic motion is converted to the:-mal energy 
of the molecules of the suspending fluid, such a treatment would 
require a solution of the equations of motion for all of these moh> 
cules. The problem of setting up an equivalent description, with 
a macroscopic scale of resolution proportional to the Brownian 
particle dimensions, is therefore a problem of statistical physics. 

In the present system, it is the interface that fluctuates around 
the equilibrium flat configuration, and thereby generates velocity 
fields in fluids 1 and 2. In the presence of fluctuations, however, 
there are also spontaneous local stresses in the bulk fluids 1 and 
2, which are not related to the velocity gradient: Landau arm 
Lifshitz [1959] determined the statistical properties of these ran- 
dom stresses, including formulae for the correlation between the 
components of the stress tensor. Hauge and Martin-LSf [-1973] 
and Hinch [-1975] showed that the macroscopic framework with 
fluctuating stresses could provide a self-consistent theoretical de- 
scription of Brownian motion. In their theories, the fluctuating 
stress acts on the particle through its divergence, which driw~s 
fluctuations in the bulk fluid and thence fluctuations in the viscous 
stress on the particle and relates the white noise A(t) in the bulk 
fluid to the fluctuating stress in the surrounding fluid. It is the 
white noise contribution to the motion of Brownian particles, i.e., 

A(t), that will continue to be present even when the particle is 
far removed from the interface. The random force contribution 
on a Brownian particle due to interface fluctuations is in addition 
to the white noise A(t) that derives from the fluctuating stresses 
in the bulk fluids. In the present section, we thus determine the 
statistical properties of the fluctuating velocity fields in fluids 1 
and 2 caused solely by spontaneous random changes in the inter- 
face shape. In our analysis, we introduce a fluctuating forcing 
function y(xs, t) in the normal stress balance for the interface 
as the "energy source" for interface shape :fluctuations. 

The energy of the interface imparted by thermal impulses de- 
cays via viscous dissipation in the surrounding fluids, and this 
process is governed by a fuctuation-dissipation theorem devel- 
oped by Landau and Lifshitz [-1959]. The construction of this 
fluctuation-dissipation theorem begins from a purely macroscopic 
description of the system, based upon the equations of motion 
for the fluctuating quantities, e.g., the interface position ~(x~, t), 
and the velocity and pressure fields (u ~, p~) in fluids j (= 1 and 
2). The equations describing the fluid motions are simply the 

Navier-Stokes equations with appropriate boundary conditions. 
Provided the order of magnitude of the fluctuating velocity u ~ 
is sufficiently small, as we shall assume here, we can neglect 
the convective inertia terms in these equations, and we thus find 
that the fluid motion is described by the unsteady Stokes' equa- 
tion plus the equation of continuity for each fluid j (=  1 and 2) 

au ~) 
pj - - -  V p  ~ + iz~V2u ~ (9 )  

0t 

V. u ~=  0 (10) 

Here, ~. is the viscosity of fluid j. The boundary conditions to 
be satisfied in dimensional form are the following: 

u ~ ) - ~ 0  a s  x 3 - - ~ -  + oe ( l la)  

At the surface of the interface, defined by IIs=x3-~(x~, t )=0  

u (" = u (2) (1  l b )  

n .  u ~  n -  u <2) :  (l lc)  

(11d) 

1 O~ 
[VHs[ Ot 

[ I t, niT,:l ] = 0 

and 

[ I n,niT,jI ] = y(v. n) + (A p)grl + y(x,, t) ( l ie)  

The parameters appearing in (11c)-(11e) are the unit outward point- 
in~' normal vector n from fuid 2 (i.e., n=VHs/IVYls[), the unit 
tangential vector, t in the interface and a fluctuating forcing func- 
tion y(x~, t) which is introduced in this "macroscopic theory" as 
the source of the interface fluctuations. The statistical properties 
of this white noise function y(x~, t) will be discussed in detail short- 
ly. Eqs. (11b) and ( l ld)  are the conditions of continuity of velocity 
and tangential stress, respectively, while (11c) is the kinematic 
condition which relates the rate of change of the random displace- 
ment, rl(xs, t), to the normal velocities at the interface. The objec- 
tive of the present analysis is to derive from Eqs. (9)-(11e) a 
Langevin-type stochastic equation for the unknown fluctuation 
function ~(x~, t) which is driven by random forcing function y(x, 
t). A correct formulation of the stochastic equations ultimately 
requires that this forcing function (i.e., white noise) y(x~, t) be 
chosen so that the interface fluctuations exhibit the correct equi- 
librium correlations (i.e., those from the equilibrium fuctuation 
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theory of the preceding section) on taking the limit: t---~oo. The 
procedure for determining y(x,, t) is very similar to the method 
used to specify the statistical properties of the white noise func- 
tion A(t) in the Langevin equation from the assumption of equipar- 
tition of energy at equilibrium [-Batchelor, 1976]. 

The problem represented by (9)-(11e) is, of course, both time- 
dependent and highly nonlinear due to the fact that rl(X,, t) is 
unknown. As noted from (8), however, the magnitude of rl is very 
small and we can therefore linearize the terms in (11c) and ( l le )  
to proceed analytically. The most effective approach to solving 
the resulting linearized problem is to apply the method of normal 
modes, whereby the small fluctuations ~(x~, t) are resolved into 
a complete set of normal modes. In particular, we resolve the 
arbitrary fluctuation ~(x~, t) into independent modes of the form: 

t):f,fflk, to)ek(k'*~-a)dkdto (12) 

and it follows from this and Eqs. (9)-(lie) that 

(uO~, pO)):f f {aO~(x3; k, r pO)(x3; k, co)}e'(k"-~)dkdr (13) 
dkdo~ 

In this formulation, the fluctuating variables q(x, t) and (u ~, p~0) 
in the problem are being expanded in terms of the same Fourier- 
transform normal modes, fi(k, to) and (fi0~, ~0~), that are usually 
employed in theories of linear dispersive wave motion and hydro- 
dynamic stability [-Whitham, 1974]. It can be seen thai: the normal 
mode, as usual, has an exponential dependence on time with a 
complex exponent. 

On substituting the expressions (12) and (13) into Eqs. (9) and 
(11) [i.e., applying the Fourier transform directly to Eqs. (9) and 
(11)], we obtain a system of ordinary differential equations for 
(fio~, ~o) and fi(k, c0). Then, the solution can be obtained straight- 
forwardly by utilizing the Squire transformation ESquire, 1933]. 
To determine the stochastic Langevin-type equation for fi(k, e,), 
in terms of the random forcing function y(k, co), we therefore 
substitute expressions for the stress components calculated from 
(fio~, ~ )  into ( l le) .  The result is 

Eft(k, o~)] fi(k o~)=~,(k, to) (14) 

If the function ~(k ,  to) is specified, the response fi(k, to) of the 
interface to the random force ~(k, r is completely determined. 
The functional quantity lqz(k, to), which is known as the gen- 
eralized susceptibility (or system function), plays a fundamental part 
in the theory described below and is given by 

t o ) = k - { P ~ r  to)+p,O,(k  fl ,(k to)} 

- 2(p~- p~){kO2(k, to)+a~T~(k r - {(Ao)g+yk 2} 
(15) 

in which 

�9 ~(k, to) = itok- ~vy(k + a~) + Vq(eq- k){2kZv/(k- 1 ) ( -  ly  + ir 2-j} 
v~(k- a~) + ~vz(k - -  0.2) 

(16a) 

�9 j(k, co)= 2k~ 1 ) ( -  ly (cq-k )  (16b) 
kv2(0.2- k) + v l ( a l -  k) 

Here, ~.= PJp2, vi = P//Pi, c~=( k2-  ito/%) ~a and the subscript q is 
defined by q = j - ( - l Y .  

The statistical properties of the fluctuating forcing function ~(k, 
to) must now be specified so that the statistical properties of the 
interface normal modes, fi(k, r at equilibrium are the same as 

those derived in the preceding section via equilibrium fluctuation 
theory, i.e., Eqs. (6)-(8). Thus, for the fluctuating random force 
~(k, to), the following principal assumptions are made: 

(i) ~(k, to) is independent of ~(k, to), 
(ii) ~(k, to) varies extremely rapidly compared to the variations 

of fi(k, to). 
The second assumption implies that time intervals of duration 

At1 exist such that the expected variations in ~(k, to) in period 
Ab are very small while the number of fuctuations in ~'(k, to) 
is still very large. Thus, the fluctuating force ~,(k, co) appears as 
white noise (i.e., random and uncorrelated) on the time scale char- 
acteristic of variations of ~(k, to): 

(~(k, co)=0 (17) 

However, it is evident from (14) and (6) that the self-correlation 
of y(k, co) cannot be zero but must take the general form: 

(y(x,, t)y(x,', t'))=Ry(x~, x/) 5 ( t - t ' )  (18a) 

o r  

(~,(k, o)) y(k', to'))=R,(k, k') 5(o)--o)') (18b) 

The unknown function Ry (or l~y), which specifies the intensity 
of fluctuations in y(x,, t) [or )'(k, co)I, must be chosen so that 
we obtain the correct equilibrium correlation results. The very 
drastic nature of the ad hoc assumptions implicit in (17) and (18) 
lies in the presumption that the forces that tile surrounding fluid 
molecules exert on the interface can be divided into two parts; 
one associated with rapid fluctuations y(x,, t) with time scales 
characteristic of molecular motion, and the other associated with 
a much slower response time characteristic of viscous relaxation 
of the system. They are, however, made with reliance on physical 
intuition and an a posteriori justification based on the success of 
the hypothesis, which will be shown shortly. 

In order to determine the functions Ry and Ry by comparison 
with the equilibrium correlation function, (6), from the preceding 
section, we must solve (14) together with (15). Using white noise 
~(k, co) with properties (17) and (18a, b) as input into (14), we 
can evaluate the correlation function (q(k, to) q(k', to')) in terms 
of ~v(k, k') and 12It(k, o)). Then, from the Fourier inversion formula, 
it follows that (fi(k, t)fi(k, t+t~ can be expressed in the form: 

( ~  eiO~~ o 
(fi(k, t)'~(k', t + t~ -- l~y(k, k')j_~ FI~(k, to) fl~(k', -o~) (19) 

It can be seen from (19) that the correlation function for fi(k, 
t) is independent of the present time t but depends only on the 
time difference t ~ and thus satisfies the inva~iance of the equilib- 
rium state under a time translation t--~t' which is expected as 
a consequence of the hypothesis of microscopic reversibility in 
statistical physics. The unknown function ~(k,  k') can now be 
determined from (19) by setting t~  and comparing the result 
with the equilibrium self-correlation function given by (6). From 
this, we see 

~.y(k, k') = ksT{(Ap)g- yk. k'}- LS(k + k') (20) 
fo~ dto 

(2n)z -~ fl,-(k, to) 1211(k ', - to )  

The central importance of the fluctuation-dissipation theorem can 
now be grasped from Eq. (20). The left-hand side of (20) involves 
a correlation function which is a measure of the magnitude of 
spontaneous fluctuations about the equilibrium state, i.e., of the 
ever-present thermal noise y(x,, t). The response function on the 
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Fig. 2. Dimensionless correlation function 
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kBTS(k+k,)/[('2n)Z|(Ap)g+Tk2}]_ ___ ~__ _ . , as a function of the dimen- 

sionless time difference z. 

right-hand side incorporates the macroscopic mechanical (i.e., dy- 
namical) response when the system has been removed from equi- 
librium by the imposition of external forces or constraints. The 
fluctuation-dissipation theorem then says that the time-correla- 
tions of the nonequilibnum fluctuations, linear in the external 
forces, are related to and can, indeed, be calculated from equilib- 
rium self-correlations. Finally, with l~y determined, we have all 
the statistical properties that are necessary to specify the system 
from a macroscopic point of view. In particular, 

~:,(k, k') 8(co + ~') 
(~(k, r co'))= ~ co) i:{~(k', co') (21) 

The statistical properties of the random velocity field ~ =  (5~>, 
u2 ~ ~3 ~) associated with the interface disturbances can be evalua- 
ted readily from (9)-(lie): 

~ = ( - l y - ~ { i ~ j ( k ,  co)e' , ~ a +  i-~Fj(k, co)e ( ni~s}~(k ' co) (22a) 

~3 ~ {r co)e(-l~/~3+~',(k, co)e~-~/~3}fi(k, co) (22b) 

Obviously, [12 ~:= ~]~. So far we have developed a general theory 
for the spontaneous "thermal" fluctuations of shape which occur 
in a real fluid interface, and determined the statistical properties 
of the fluctuating flow field (~io~, ~ )  driven by the random bound- 

ary fluctuations, ~(k, co). 
Before concluding this section, we turn, for illustrative pur- 

poses, to a detailed evaluation of the correlation function, given 
by (21). Here, we consider a general case in which viscous effects 
on the interface relaxation cannot be neglected. In this case it 
can be easily seen from (15) that the interface fluctuations are 

governed by two independent time scales 

- ~ - /  P~+P~ (23a) 
z~- coo - -  V ( A  p)gk + yk 3 

and 

Pt + P2 (23b) 
rR = kZ(laa + ~2) 

Here, coo is the natural frequency for interface oscillation and 
thus 2m:t represents the period of oscillation in the absence of 
viscous friction. Meanwhile, ~R denotes the viscous relaxation time 
scale for the interface displacement on which the initial amplitude 
due to the impulse decays exponentially. Tile same exponential 
attenuation of capillary waves at the free surface of a body of 
liquid (i.e., laL=0 and p~=0) was predicted by Lamb 1-1932] from 
the fact that the loss of total energy (kinetic plus potential) of 
the liquid over one cycle is necessarily equal to the rate of viscous 
dissipation of energy per cycle, provided the net flux of energy 
into the volume of liquid concerned is zero. In Fig. 2, the correla- 
tion function (~(k, t)-~(k', t ')) given by Fourier transformation 
of (21) is illustrated as a function of the dimensionless time differ- 
ence vl-=(t--t ')/vR] for ~=0.2, 0.6, 1.0 and 1.4. Here, g=l:l/l:e. 
It can be seen that the restoring process which drives the system 
back to a flat configuration exhibits three particular modes de- 
pending on the ratio ~, of viscous forces to capillary elastic re- 
sponse forces: an oscillatory damping (~<1), a critical damping 
(~=1) and underdamping (~>1). 

This completes our study of the spontaneous fluctuations of 
interface shape that are caused by the thermal agitation in the 
surrounding fluids. In the next section, we shall consider motions 
of spherical Brownian particles due to the random flow field that 
is induced by these interface fluctuations. 

B R O W N I A N  M O T I O N  N E A R  A S P O N T A N E O U S L Y  
FLUCTUATING I N T E R F A C E  

In the previous section, we studied and derived a fluctuation- 
dissipation theorem for spontaneous fluctuations of a fluid inter- 
face around its equilibrium configuration. In this section, we will 
consider the motions of a nearby Brownian particle which occur 
as a consequence of the velocity field, (22a, b), that is generated 
by these fluctuations. In general, a Brownian particle near an in- 
terface will undergo random motions due to random fluctuating 
forces of two types: the first, which we shall denote as FR(x; t), 
is caused by the boundary-driven random velocity field associated 
with spontaneous interface fluctuations, and the second, which 
we shall denote as A(t), is caused by random fluctuations in the 
molecular environment immediately adjacent to the particle. It 
is this latter contribution which will continue to be present even 
when the particle is far removed from the interface. In this sec- 
tion, we consider the motion of a spherical Brownian particle of 
radius ~ that is located in fluid 2 near a fluid interface. The sepa- 
ration distance between the particle center and the undeformed 
flat interface is d. The usual supposition is that, for sufficiently 
small fluctuations, the independent random forces and the macro- 
scopic time-evolution of particle momentum have to obey a linear 
law or a macroscopic rate equation of the Langevin type, i.e., 

dU 
- -  + B- U = Fe(x; t) + n(t) (24) 
dt 

in which B is a linear operator (called the Boussinesq operator) 
determined from the unsteady Stokes' equation such that B.U 
represents the time dependent viscous forces including the virtual 
mass and Basset memory contributions. 

In the present section, we consider the motion which results 

Korean J. Ch. E.(Vol. 12, No. 3) 



3 3 6 S.-M. Yang 

from the random force FAx; t) that results from the fluctuating 
velocity field (22a, b). The random force corresponding to the 
velocity field (22a, b) can be calculated from the Faxen's law gen- 
eralized to an arbitrary time-dependent flow by Yang [1987]. We 
begin by taking the Fourier transform of the Langevin Eq. (24) 
to obtain 

[ICL(o})] 0,(d; k, co)=[~m-(d; k, o))+.~(oJ) (25) 

in which the susceptibility for the particle motion is given by 

I-~,(00)=-o~i+ 6~la~a { l + a ~ ( l - i ) } -  2~p~a~(~ i (26) 
m 3m 

Here, m is the mass of the particle. The Fourier component of 
the random force l~-(d; k, e)  determined from the generalized 
Faxen's law, is given by 

[~.,(o)) = 6np2a t l + a ~ ( 1 -  i)l[5,(2'] s 
m 

2np2a3t~ i[~,(2)]ov (27) 
3m 

Here, E-J0 s and [ ' ]0  v denote the average values of the quantity 
in the bracket over the sphere surface and volume, respectively, 
and each component of the undisturbed velocity ~<z) is defined 
by (22a, b). 

Since the random fluctuating forces i ~  and ~ are not correla- 
ted (i.e., <lbR,~)=0) and the  problem is linear, we can consider 
the contribution of the random force lbR~ in (25) independently 
of the white noise ~ .  We thus examine the net effect of random 
fluctuations of the interface configuration on the motions of a 
spherical Brownian particle by determining the velocity correla- 
tion of a Brownian sphere that is freely immersed in the fluctua- 
ting velocity field driven by the spontaneous interface distortions. 
Then, the particle velocity correlation function will, in turn, deter- 
mine the net diffusion coefficient of the Brownian particle associ- 
ated with the random force FR~ from (25). First, we now evaluate 
the particle velocity correlation function {~,(d; k, k', r r (O~(d; 
k, o~) 0j(d; k', r by solving the Langevin Eq. (25) for each 
mode of random force l~i(d; k, o)) of (27). 

,. P,,(d; k, k', o), co') 
O~(d; k, k', co, o~ )= le[,(o)) lq.(o)') (28) 

and then relating the required statistics of the random force (i.e., 
the correlation function ~,, for the random force lye) to the statisti- 
cal property (21) of the interface fluctuations. The correlation 
function ~0 for the random force can be determined from the 
generalized Faxen's law of (27) together with the random velocity 
field (22a, b) which is related to the random stochastic fluctuations 
{l(k, r by (21). The resulting expression in terms of the correla- 
tion function for ~(k, c0) is simply 

P 0 ( d ;  ]h k', 6o, c0')=(l~.(d; it, r ~ ( d ;  k', co')) 
=~,,,(d; k, o~)(~(k, c0)~(k', r (29) 

in which each component of the tensor C0 can be obtained from 
(21)-(22h) combined with (27). Taking the inverse Fourier trans- 
formation of (29) with respect to k, and k/, and utilizing the pro- 
perties of the Dirac 5-function, we get 

? Pi~(d; ~, -~o)=2n o~,~(d; k, ~)<~(L ~)~(k', - ~ ) ) k d k  (30) 

Thus, the particle velocity correlation function (U~(d; t) U~{d; t + to)), 
which relates the present particle velocity to its velocities at other 
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times, can be determine from (28) and (30), i.e., 

Q,,(d; t~ t) U,(d; t+t~ P0(d; 
- | I A . ( c o )  I z do) 

(31) 

It can be seen from (31) that the velocity correlation function 
Q~j(d; t ~ is independent of the present time t and depends only 
on the time difference t o between the present time and other 
times as a consequence of the time-translational invariance of 
the equilibrium state [Kreuzer, 1984]. In order to proceed analy- 
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tically, there are two possible asymptotic limits corresponding to 
the relative importance of viscous damping forces on the interface 
relaxation compared to the capillary forces (i.e., kZ~0#v, �9 or k2~ 
co/vj). In the weak dissipation limit (i.e., k2~ko/vj), however, the 
amplitude of interface fluctuations caused by an initial impulse 
sustains and does not decay since the viscous damping effects 
are negligible. In the asymptotic limit, k2~o /v ,  there exist two 
limiting cases depending upon the relative magnitude of the parti- 
cle radius a compared to the length scale of vorticity penetration 
generated by the particle motions, i.e v#(~oa2)>l(or ~1) .  The 
nature of the response, in this case can be understood most clear- 
ly by plotting (30) and (31) as shown in Figs. 3 and 4, where 
the correlation functions for ~m and Oa are given as a function 
of ~ for the same values of the parameter ~ as in the previous 
Fig. 2. It can be seen from Fig. 3 that the force on the sphere 
that is generated by the random impulse of the interface decays 
exponentially on the same viscous dissipation time scale, ~g, as 
the amplitude ~](k, t) of the interface distortion. The viscous damp- 
ing of the force on the particle can be characterized by three 
typical modes depending on ~ (i.e., the ratio of vi~zous forces 
to elastic-response forces) as can be seen in section 3, and the 
frequency of the oscillatory damping case (~<1) is exactly the same 
as the frequency of the interface oscillation. The force correlation 
lags behind the interface fluctuation�9 The phase lag q~ is always 
negative 

and dependent on the ratio of the two intrinsic forces of the sys- 
tem [i.e., q~({~0) = 0 and g~(g~l)  = - n]. The velocity correlation 
function indicates that the energy imparted to a particle by each 
thermal impulse on the interface decays exponentially on the two 
independent time scales, ~ on which the amplitude q and the 
induced force Fm decay, and ~p[ = m/(6ng~a)] characteristic of the 
viscous relaxation time for motions of Brownian pal~:icles in an 
unbounded fluid. Thus the correlation functions of (30) and (31) 
constitute the fluctuation-dissipation theorem for the motion of 
a Brownian sphere due to the spontaneous fluctuations of a near- 
by fluid interface. They relate the spontaneous fluctuations in 
interface shape caused by the thermal white noise to the viscous 
dissipation due to the corresponding motions of the surrounding 
fluids. From (31) we can evaluate the phase lag ~u for the velocity 
response of the particle to the interface oscillations 

my= - 2tan- ~ ( ~ )  + 2tan- ~( 1 -  k"~ 

in which ~ ( = t # r e )  is the ratio of the time scale for the interface 
fluctuation (i.e., ~ - ~ )  to that of the viscous relaxation of the parti- 
cle velocity. In Fig. 5, the phase lag is plotted as a function of 
the parameter ~ representing the viscous damping force relative 
to the elastic-response force. It can be easily seen that when ~ = :  
1 the correlations of the random force and the particle velocity 
are in phase. However, the velocity oscillates with the same fre- 
quency as the force and interface fluctuations�9 Chaplin [198411 
experimentally measured forces acting on a horizonlal cylinder 
with radius a which is located at a distance d=2a-5a from the 
undeformed plane of a free surface which is executing wave mo- 
tions with the range of the dimensionless wave number, ka= 
0.1464).824. The existence of phase lags in the fluctuating force 
and the particle velocity with respect to the phase of the incident 
waves, which has been predicted in the present analysis, was 
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Fig. 5. Phase lag for the velocity response of the particle to the inter- 
face oscillations as a function of ~ for various values of ~ .  

demonstrated by the experimental data of Chaplin. 
Let us now turn to the general expression for the velocity corre- 

lation function, Eq. (31), in order to consider the effect of interface 
fluctuations caused by the thermal noise of surrounding molecules 
on the Brownian diffusion of particles in the vicinity of the inter- 
face. As we mentioned earlier, the relaxation of the interface dis- 
tortion, q, back toward the equilibrium configuration is very rapid 
and the displacement -q after receiving a thermal impulse decays 
exponentially on the time scale zR(--lO -8 sec in water). Further, 
the correlation functions of (30) and (31) show that the relaxation 
of the particle velocity is exponentially rapid on the time scales 
zp and vR characteristic of the viscous relaxation of particle motion 
and of the interface relaxation�9 In a time interval At which is 
very large compared to the relaxation time scales vR and rp (i.e., 
At~rR, re), the motion of a particle can therefore be viewed as 
random and the mean square displacement (]x,(t) xj(t)[) and the 
Brownian diffusivity D 0 are related at equilibrium (i.e., t -+~)  ac- 
cording to 

1 d 
D,~= lira ~ ~(x, ( t )xj ( t ) )  (34) 

Recalling the fact that the time differential is commutted with 
the ensemble averaging and the displacements written as inte- 
grals of the velocity from the initial zero conditions [i.e., x,(0)=0], 
it follows that 

t D,/d)= o(U,(d; t) U,(d; t+t~ dt ~ (35) 

in which the integrand is the velocity correlation function given 
by (31). Thus, the diffusivity is immediately recognized as the 
spectral density function (~j(d; (o) at frequency co=0. Utilizing 
(31), we thus have 

[f'4d; m, -~)1 
D#(d)= ~-.olim n[ iltl.(co)l 2 j (36) 

In this low frequency limit, the functions ~/,k, co)= 2kay. ~/l{k, 
co)=-2kavj, and the susceptibility for the interface fluctuations 
1211(k, 0o)= - [ (Ap)g+kZy] .  Thus we can readily evaluate the diffu- 
sion coefficient by substituting the various functions into (30) and 
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(31). The result is 

D,j-- ksTM,j (37) 

which includes the contribution from the white noise A,(t). In 
(37), M~ is the mobility tensor for the particle motion in the pre- 
sence of a nondeforming flat interface. Thus, the contribution 
from the random fluctuations of interface shape turns out to be 
identically equal to zero. This implies that the fluctuating velocity 
field caused by the random distortion of interface does not pro- 
duce any net rate of change of mean-square particle displacement. 
One possible explanation of the present result, (37), stems from 
the linear theory of plane progressive waves which predicts that 
at any fixed point the fluid speed remains constant, while the 
direction of fluid displaced by the waves moves through a circular 
orbit and the time average of net displacement is identicaUy zero 
in the linear theory, since the second order [in the wave ampli- 
tude, O(rl2)] mean Stokes' drift in the direction of the wave propa- 
gation can be neglected in the low frequency limit, o~-~0. In the 
low frequency limit, which represents almost steady motion, the 
trajectories of a Brownian sphere are exactly the same as those 
of the fluid particle I-Whitham, 1974]. 

CONCLUSIONS 

We have considered the motions of Brownian particles in the 
fluctuating velocity field induced by the random spontaneous 
changes in interface shape owing to thermal impulses from the 
surrounding fluid. We have, in addition, determined the various 
covariance functions and the corresponding effect on the diffusion 
coefficient. 

The restoring process which drives the interface back to a flat 
configuration is governed by two distinct time scales ~ and rR 
and exhibits three particular modes depending on the ratio 
(=rd~:D, of viscous forces to capillary elastic response forces: 
an oscillatory damping (~<1), a critical damping (~= 1) and under- 
damping (~> 1). 

The random force on the sphere that is generated by the ran- 
dom impulse of the interface decays exponentially on the same 
viscous dissipation time scale, rR, as the interface distortion. The 
viscous damping of the force on the particle can be characterized 
by three typical modes depending also on /~, and the frequency 
of the oscillatory, damping case (~<1) is exactly the same as the 
frequency of the interface oscillation. 

The diffusion coefficient tensor is related by the Stokes-Eins- 
tein equation to the mobility tensor for the particle motion in 
the presence of a nondeforming flat interface. Although the veloc- 
ity autocorrelation is modified by the interface fluctuation, the 
random fluctuations of interface shape does not produce any net 
rate of change of mean-square particle displacement. 

H1 :susceptibility for the interface fluctuations 
I-L :susceptibility for the particle motion 
i :imaginary number 
J0 :Bessel function of the first kind of order 0 
k, k': wave vectors 
k, k': magnitudes of the wave vectors k, k' 
k8 : Boltzmann constant 
Lo : interface width 
m : particle mass 
Mii : mobility tensor 
n :uni t  normal vector on the interface 
pO~ :pressure of fluid j 
P0 : force autocorrelation 
Q,j : velocity autocorrelation 
Ry :autocorrelation of y 
S :entropy induced by the interface fluctuations 
t :uni t  tangential vector on the interface 
t : time 
T : stress tensor 
T : absolute temperature 
u ~ :velocity of fluid j, (ua ~, u2 ~, u3 ~ 
U :Brownian particle velocity 
W :probability function for the interface displacement 
x, :position vector of a ponit placed on the interface 
x3 :coordinate perpendicular to the plane interface 
y :White noise on the interface 
7 : interfacial tension 

: Dirac delta function 
: rdr~ 
:interface displcement from the plane of x3--O 

k :viscosity ratio, IJx/IJ~ 
:rd~p 

~aj :viscosity of fluid j 
vj :kinematic viscosity of fluid j 
I-Is :shape function for the interface 
pj :density of fluid j 

:intermolecular length scale 
r :dimensionless time difference 
zl : reciprocal of the natural frequency of the interface oscilla- 

tion 
rp :viscous relaxation time for the particle motion 
rR :viscous relaxation time scale for the interface fluctuation 
0F :phase lag for the force oscillation 
~v :phase lag for the particle velocity oscillation 
@~ :function defined in (16a) 
xF~ :function defined in (16b) 
co :frequency of the interface oscillation 
oJo :natural frequency of the interface oscillation 
f~ : normalization constant 

NOMENCLATURE 

a : particle radius 
A :White noise on the Brownian particle 
A :free energy functional for the interface fluctuations 
B : Boussinesq tensor 
d : separation distance between the particle and the plane inter- 

face 
D~ i : diffusivity tensor 
FR :force induced by the interface fuctuations on the particle 
g : gravity 

Symbols  
V : gradient operator 
V, :two-dimensional gradient operator on the interface 
(:) :variable ( ' )  in Fourier transformed domain 
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